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LETTER TO THE EDITOR

The asymmetric exclusion model with sequential update
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† Institut für Theoretische Physik, Universität zu Köln, D-50937 K̈oln, Germany
‡ Theoretische Physik/FB 10, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg,
Germany

Received 11 April 1996

Abstract. We present a solution for the stationary state of an asymmetric exclusion model
with sequential update and open boundary conditions. We solve the model exactly for random
hopping in both directions by applying a matrix-product formalism which was recently used
to solve the model with sublattice-parallel update (Hinrichsen H 1995Weizmann Inst. Preprint
cond-mat/9512172). It is shown that the matrix-algebra describing the sequential update and
sublattice-parallel update are identical and can be mapped onto the random sequential case
treated by Derridaet al (Derrida B, Evans M R, Hakim V and Pasquier V 1993J. Phys. A:
Math. Gen.26 1493).

The one-dimensional asymmetric exclusion model (AEM) is one simple example of a
reaction–diffusion model and has been used to describe various problems in different fields
of interest, like the kinetics of biopolymerization [1] and traffic [2]. Using recursion relations
on the system size it was solved in 1992 [3] for the case of random sequential update and
open boundary conditions. Open boundaries here and in the following mean that particles
are injected at one end of a chain ofL sites with probabilityα and removed at the other
end with probabilityβ. This model was then solved again by Derridaet al 1993 [4] using a
matrix product ansatz (MPA), inspired by the matrix product ground state for quantum spin
chains with ground-state energy zero [5], for the weights of the stationary configurations.
This ansatz was most elegantly used to obtain expressions for the density profile and higher
correlations consisting only of products of two matrices (belonging to the two possible states
of each site) and two vectors describing the influence of the boundaries. Since then the
MPA was extended to also find the transient of the model [6] and to recover solutions of
certain known integrable reaction–diffusion models [7]. All these models work with random
sequential update.

Hinrichsen [8] solved the AEM model with sublattice-parallel update and was able to
confirm earlier conjectures for the correlation functions [9]. It should be made clear that
this update is substantially different from the fully parallel update used, for example, for
modelling traffic flow. Nevertheless, to our knowledge this is the first model with non-
continous time which has been solved using the MPA. The classes of models on which the
MPA can be used successfully remains an open question.
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In this letter we study the AEM withsequentialupdate. The model then can be defined
as follows.

Consider sites located on a chain of lengthL. Each sitei (0 6 i 6 L) can be occupied
by a particle (τi = 1) or may be empty (τi = 0). We start the update at the right end of the
chain and remove a particle at sitei = L with probability β. We then look at the pair of
sites(i = L − 1, i = L). If we find a particle at siteL − 1 and no particle (called a hole)
at siteL we move the particle one site to the right with probabilityp. In the opposite case
the particle hops one site to the left with probabilityq. In the remaining two cases nothing
happens. We continue the update with the pair(i = L− 2, i = L− 1) and so forth until we
reach the left end of the chain. After the update of pair(i = 1, i = 2) we inject a particle
at sitei = 1 with probabilityα if the site is empty.

Let us remark at this point that this model put on a ring (no injection/removing of
particles and periodic boundary conditions) has a trivial stationary state [10, 11] where
correlations are absent.

One could reverse the order of the sequential update and go from the left to the right
through the chain (using the same rule as before for the pair-update). These two models
are connected by a particle–hole symmetry: injecting particles can be seen as removing
holes, and vice versa. Therefore it is sufficient to study just one model. The particle–hole
symmetry gives a first hint at the phase diagram: one would naively expect the same phase
diagram for both models. This implies a symmetry of the phase diagram inα andβ.

Following the MPA, we write the stationary probability distributionP0(τ1, τ2, . . . , τL)

as

P0(τ1, τ2, . . . , τL) = Z−1
L 〈W |

L∏
i=1

(τiD + (1 − τi)E)|V 〉 (1)

or formally as

|P0〉 = ZL
−1 〈W |

(
E

D

)⊗L

|V 〉 . (2)

The square matricesE and D can be infinite-dimensional. The vectors〈W | and |V 〉 act
in the same vector space asE and D and will, like E and D, depend onα and β. The
normalization constant is given byZL = 〈W |(D + E)L|V 〉. |P0〉 represents the weights of
all the configurations in the stationary state. This implies that|P0〉 is invariant under the
action of the update-operator or transfer matrixT :

T |P0〉 = |P0〉 (3)

Let us now write downT explicitly. The boundary conditions may be represented by
operatorsR andL acting on sitei = L and i = 1, respectively:

R =
(

1 β

0 1− β

)
L =

(
1 − α 0

α 1

)
. (4)

The chosen basis forR andL is (0, 1). The update-rule for any pair of sites(i, i + 1) can
be written as

Ti =


1 0 0 0

0 1− q p 0

0 q 1 − p 0

0 0 0 1

 . (5)
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The basis is(00, 01, 10, 11) and formally we have

T = L · T1 · · · · · T(L−1) · R (6)

with

L = L ⊗ 1 ⊗ · · · ⊗ 1 (7)

R = 1 ⊗ · · · ⊗ 1 ⊗ R (8)

Ti = 1 ⊗ 1 · · · ⊗ Ti ⊗ 1 · · · ⊗ 1 (9)

where1 denotes the identity matrix.
It is peculiar that one can use precisely the same mechanism which was used to

determine the stationary state of the model with sublattice-parallel update [8] in order to
fulfil equation (3):

T
[(

E
D

)
⊗

(
Ê
D̂

)]
=

(
Ê
D̂

)
⊗

(
E
D

)
〈W |L

(
Ê
D̂

)
= 〈W |

(
E
D

)
R

(
E
D

)
|V 〉 =

(
Ê
D̂

)
|V 〉

(10)

with some square matriceŝE, D̂. This means that a ‘defect’ is created in the beginning of
an update at sitei = L and then transported through the chain until it reaches the left end,
where it disappears.

Equation (10) leads to the following bulk algebra:

[E, Ê] = [D, D̂] = 0

(1 − q)ED̂ + pDÊ = ÊD

qED̂ + (1 − p)DÊ = D̂E

(11)

and the boundary conditions

〈W |Ê(1 − α) = 〈W |E (1 − β)D|V 〉 = D̂|V 〉
〈W |(αÊ + D̂) = 〈W |D (E + βD)|V 〉 = Ê|V 〉 .

(12)

For q = 0, p = 1 we recover the algebra which was solved in [8] for the model
with sublattice parallel-update, and we can adopt the two-dimensional representations of
E, D, Ê, D̂, 〈W |, |V 〉 of the algebra (11), even though|P0〉 has a different structure. One
can easily show that the density profile of the sequential update corresponds to the density
of the even sites with sublattice-parallel update and one gets essentially the same phase
diagram.

One can check that for the case

(1 − α)(1 − β)(1 − q) = 1 − p (13)

there exists a one-dimensional solution of the complete algebra. This equation defines the
lines in the phase diagram on which the mean field solution becomes exact. One can use
these lines to calculate different currents in the phase diagram [10, 11] and we can exclude
the casep = q = 1 in what follows.

To solve the general algebra, we first note that

[E + D, Ê + D̂] = 0 (14)

holds for all values ofp, q. By demanding

Ê = E + λ1 (15)

D̂ = D − λ1 (16)
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(with some real numberλ and the identity matrix1) one can reduce the whole algebra of
seven equations to just three equations:

pDE − qED = λ(1 − q)E + λ(1 − p)D

α〈W |E = λ(1 − α)〈W |
βD|V 〉 = λ|V 〉.

(17)

We define

D̃ := λ(1 − p)D

Ẽ := λ(1 − q)E

λ2 := 1

(1 − q)(1 − p)

(18)

and rewrite (17) as

pD̃Ẽ − qẼD̃ = Ẽ + D̃

α(1 − p)〈W |Ẽ = (1 − α)〈W |
β(1 − q)D̃|V 〉 = |V 〉.

(19)

This is the algebra for the AEM with random sequential update but the same local transfer
matrix and the same boundary conditions as in our model. It was solved by Derridaet al
[4] with infinite-dimensional matrices. Note that one has to rescale the vectors〈W | and|V 〉
of their solution with(1 − α)/(1 − p) and 1/(1 − q), respectively.

For the caseq = 0 we write down a slightly different representation (λ = 1):

D = 1

p



p

β
a1 0 0 ·

0 1 1 0 ·
0 0 1 1 ·
0 0 0 1 ·
· · · · ·


E = 1

p



p(1 − α)

α
0 0 0 ·

a2 1 − p 0 0 ·
0 1− p 1 − p 0 ·
0 0 1− p 1 − p ·
· · · · ·


(20)

〈W | = (1, 0, 0, 0) |V 〉 =


1

0

0

0

 (21)

a1a2 = p

αβ
[(1 − p) − (1 − α)(1 − β)] . (22)

One sees that the constraint (13) leads to an effectively one-dimensional representation as
expected.

The MPA now makes it straightforward to calculate the density profile, higher
correlations, the current and the phase diagram. We note at this point that for the case
q = 0 the randomness inp produces qualitatively the same phase diagram as in the case of
random sequential dynamics withq = 0, p = 1. This is understandable for smallp but far
from obvious for generalp [10, 11]. Further results, also concerning the comparison of the
AEM with random sequential, sublattice-parallel, sequential and fully parallel update will
be published elsewhere [10, 11].
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The present letter shows that the sequential AEM with random hopping in both directions
can be solved by means of a mapping onto the known solution of the random sequential
AEM. This also implies a generalization of the known solution of the AEM for sublattice-
parallel update, which had been solved for deterministic hopping. It is remarkable that
pDE − qED = E + D is the fundamental bulk algebra equation for all three types of
update discussed so far. This opens the possibility to understand more about the nature and
implications of different types of update and randomness [10, 11].

It would be most interesting to find out if a more general connection exists between
time-continous and time-non-continous models. The solution of the sequential dynamics
gives reason to hope that the MPA is capable of solving the fully parallel case, which
can be written as a three-state model with the same sequential update as studied in this
work [10, 11].

This work has been performed within the research program of the Sonderforschungsbereich
341 (Köln–Aachen–J̈ulich). We would like to thank L Santen and B Strocka for fruitful
discussions. While writing the manuscript, we were informed about investigations on the
model with sublattice update and random hopping performed by Peschel and Honecker [12].
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[5] Kl ümper A, Schadschneider A and Zittartz J 1993Europhys. Lett.24 293
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